OpenCV结合V4l2实现人脸检测

之前简答得实现了一下人脸检测,不过使用的opencv自带的摄像头操作函数,然而那个并不能使用在嵌入式设备上,为了通用性,我将让opencv使用v4l2获得的数据帧进行检测。

说明 
v4l2其实并不难,只不过大家容易被网上那动辄几百行的代码唬住,那些代码大多都是在检错,因为操作硬件这种事情出错的概率确实很高,每一步都可能出错,但是核心的语句也就那几行,这里推荐这几篇文章(点我跳转),我都已经仔细读过,含金量比较高,当然英语好直接都自带文档也是极好的。 
opencv与v4l2结合的问题就是数据格式,因为我使用的是Qt,v4l2获得的数据帧会转换为QImage类型,OpenCV则主要使用Mat类型,不过不用担心,简单转换一下就可以了,这篇文章给出了转换方式,由于是一个工程,所以只上OpenCV部分的代码了。

代码 
需要下载整个项目的(点我下载

#include "facedetect.h"

FaceDetect::FaceDetect()
{
    this->tryflip = false;
    this->cascade.load("/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml");
    this->nestedCascade.load("/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml");
    this->scale = 1.5;
}




void FaceDetect::setMatImageFromQImage(QImage img)
{
    this->image = QImage2cvMat(img).clone();
}

QImage FaceDetect::getQImage()
{
    return cvMat2QImage(detectAndDraw(image, cascade, nestedCascade, scale, tryflip));
}

QImage FaceDetect::cvMat2QImage(const cv::Mat& mat)
{
    // 8-bits unsigned, NO. OF CHANNELS = 1
    if(mat.type() == CV_8UC1)
    {
        QImage image(mat.cols, mat.rows, QImage::Format_Indexed8);
        // Set the color table (used to translate colour indexes to qRgb values)
        //printf("set colors\n");
        image.setNumColors(256);
        for(int i = 0; i < 256; i++)
        {
            image.setColor(i, qRgb(i, i, i));
        }
        // Copy input Mat
        uchar *pSrc = mat.data;
        for(int row = 0; row < mat.rows; row ++)
        {
            uchar *pDest = image.scanLine(row);
            memcpy(pDest, pSrc, mat.cols);
            pSrc += mat.step;
        }
        return image;
    }
    // 8-bits unsigned, NO. OF CHANNELS = 3
    else if(mat.type() == CV_8UC3)
    {
        // Copy input Mat
        const uchar *pSrc = (const uchar*)mat.data;
        // Create QImage with same dimensions as input Mat
        QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);
        return image.rgbSwapped();
    }
    else if(mat.type() == CV_8UC4)
    {
        //qDebug() << "CV_8UC4";
        // Copy input Mat
        const uchar *pSrc = (const uchar*)mat.data;
        // Create QImage with same dimensions as input Mat
        QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_ARGB32);
        return image.copy();
    }
    else
    {
        //qDebug() << "ERROR: Mat could not be converted to QImage.";
        return QImage();
    }
}
Mat FaceDetect::QImage2cvMat(QImage image)
{
    //printf("QImage2cvMat\n");
    cv::Mat mat;
    //qDebug() << image.format();
    switch(image.format())
    {
    case QImage::Format_ARGB32:
    case QImage::Format_RGB32:
    case QImage::Format_ARGB32_Premultiplied:
        //printf("ARGB\n");
        mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.bits(), image.bytesPerLine());
        break;
    case QImage::Format_RGB888:
        //printf("RGB888\n");
        mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.bits(), image.bytesPerLine());
        cv::cvtColor(mat, mat, CV_BGR2RGB);
        break;
    case QImage::Format_Indexed8:
        mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.bits(), image.bytesPerLine());
        break;
    }
    return mat;
}


Mat FaceDetect::detectAndDraw( Mat& img, CascadeClassifier& cascade,
                                CascadeClassifier& nestedCascade,
                                double scale, bool tryflip )
{
    double t = 0;
    vector<Rect> faces, faces2;
    const static Scalar colors[] =
    {
        Scalar(255,0,0),
        Scalar(255,128,0),
        Scalar(255,255,0),
        Scalar(0,255,0),
        Scalar(0,128,255),
        Scalar(0,255,255),
        Scalar(0,0,255),
        Scalar(255,0,255)
    };
    Mat gray, smallImg;

    cvtColor( img, gray, COLOR_BGR2GRAY );
    double fx = 1 / scale;
    resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
    equalizeHist( smallImg, smallImg );

    t = (double)getTickCount();
    cascade.detectMultiScale( smallImg, faces,
                              1.1, 2, 0
                              //|CASCADE_FIND_BIGGEST_OBJECT
                              //|CASCADE_DO_ROUGH_SEARCH
                              |CASCADE_SCALE_IMAGE,
                              Size(30, 30) );
    if( tryflip )
    {
        flip(smallImg, smallImg, 1);
        cascade.detectMultiScale( smallImg, faces2,
                                  1.1, 2, 0
                                  //|CASCADE_FIND_BIGGEST_OBJECT
                                  //|CASCADE_DO_ROUGH_SEARCH
                                  |CASCADE_SCALE_IMAGE,
                                  Size(30, 30) );
        for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r )
        {
            faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
        }
    }
    t = (double)getTickCount() - t;
    //printf( "detection time = %g ms\n", t*1000/getTickFrequency());
    for ( size_t i = 0; i < faces.size(); i++ )
    {
        Rect r = faces[i];
        Mat smallImgROI;
        vector<Rect> nestedObjects;
        Point center;
        Scalar color = colors[i%8];
        int radius;

        double aspect_ratio = (double)r.width/r.height;
        if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
        {
            center.x = cvRound((r.x + r.width*0.5)*scale);
            center.y = cvRound((r.y + r.height*0.5)*scale);
            radius = cvRound((r.width + r.height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
        else
            rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
                       cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
                       color, 3, 8, 0);
        if( nestedCascade.empty() )
            continue;
        smallImgROI = smallImg( r );
        nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
                                        1.1, 2, 0
                                        //|CASCADE_FIND_BIGGEST_OBJECT
                                        //|CASCADE_DO_ROUGH_SEARCH
                                        //|CASCADE_DO_CANNY_PRUNING
                                        |CASCADE_SCALE_IMAGE,
                                        Size(30, 30) );
        for ( size_t j = 0; j < nestedObjects.size(); j++ )
        {
            Rect nr = nestedObjects[j];
            center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
            center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
            radius = cvRound((nr.width + nr.height)*0.25*scale);
            circle( img, center, radius, color, 3, 8, 0 );
        }
    }
    //imshow( "result", img );
    return img;
}点击打开链接
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187


展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读